From symplectic deformation to isotopy

نویسنده

  • Dusa McDuff
چکیده

Let X be an oriented 4-manifold which does not have simple SW-type, for example a blow-up of a rational or ruled surface. We show that any two cohomologous and deformation equivalent symplectic forms on X are isotopic. This implies that blow-ups of these manifolds are unique, thus extending work of Biran. We also establish uniqueness of structure for certain fibered 4-manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luttinger Surgery along Lagrangian Tori and Non-isotopy for Singular Symplectic Plane Curves

We discuss the properties of a certain type of Dehn surgery along a Lagrangian torus in a symplectic 4-manifold, known as Luttinger’s surgery, and use this construction to provide a purely topological interpretation of a non-isotopy result for symplectic plane curves with cusp and node singularities due to Moishezon [9].

متن کامل

Lagrangian submanifolds and Lefschetz pencils SG/0407126 16

Given a Lagrangian submanifold in a symplectic manifold and a Morse function on the submanifold, we show that there is an isotopic Morse function and a symplectic Lefschetz pencil on the manifold extending the Morse function to the whole manifold. From this construction we define a sequence of symplectic invariants classifying the isotopy classes of Lagrangian spheres in a symplectic 4-manifold.

متن کامل

Erratum to “π1 of Symplectic Automorphism Groups and Invertibles in Quantum Homology Rings”

We note an error in [2]. This Erratum will not be published. The paper defines Ham(M,ω) to be the group of Hamiltonian automorphisms, equipped with the C∞-topology, and G as “the group of smooth based loops in Ham(M,ω)”. This is a misleading formulation, since what the paper really means is that elements of G are Hamiltonian loops. If one understands it in that way, then the proof of [2, Lemma ...

متن کامل

Lagrangian Two-spheres Can Be Symplectically Knotted

In the past few years there have been several striking results about the topology of Lagrangian surfaces in symplectic four-manifolds. The general tendency of these results is that many isotopy classes of embedded surfaces do not contain Lagrangian representatives. This is called the topological unknottedness of Lagrangian surfaces; see [4] for a survey. The aim of this paper is to complement t...

متن کامل

Symplectic folding and non-isotopic polydisks

Our main result demonstrates the existence of different Hamiltonian isotopy classes of symplectically embedded polydisks inside a 4-ball, and by the same argument also in the complex projective plane. Furthermore, we find exactly how large the ball can be before the embeddings become isotopic; the optimal isotopy is a version of symplectic folding. Before stating the result precisely we fix som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996